
RRI TUTORIAL
This notebook provides a basic overview and information on how to use the CASSIOPE RRI
HDF5 files to plot a spectrogram for each dipole.
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About RRI

The Radio Receiver Instrument (RRI) is a four-channel digital receiver fed by four 3-metre
monopoles called radio monopoles 1-4, arranged in a crossed configuration. The receiver
measures the electric fields of either spontaneous radio emissons or waves created by
ground transmitters, such as ionosondes, high-frequency radars ad ionospheric heaters. RRI
has a sampling rate of 65200.33933 Hz and monopoles 1 and 2 are part of channel A, and
monopoles 3 and 4 make up channel B. This is done to operate channel A on one frequency
and channel B on another, or both on the same. The vast majority of the time instrument is
operated in its "I3-Q1-I3-Q3" mode where monopoles 1 and 3 are the real components(l-
component) and monopoles 2 and 4 are the complex components (Q-component). The data
is downloaded to the ground station in 256 byte packets, with each packet containing 29
samples from each monopole.

You can find the open-access RRI instrument paper here.

Prerequisites

1. This tutorial assumes you have some basic understanding of Python and its terminology.

2. You will be required to install the following libraries in your python environment:
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• h5py
• numpy
• matplotlib

3. To plot a spectrogram, it will be beneficial to have some basic understanding of Fast
Fourier Transform (FFT) and the normalization techniques used for spectrograms.

How the files are stored

The level 1 files from RRI are stored in zip format. The zip files contain an H5 file from a given
pass. Each H5 file contains three datasets:

• CASSIOPE Ephemeris: This dataset contains information about the spacecraft's telemetry
such as sltitude, Mission Elapsed Time (MET), position, velocity, etc.

• RRI Data: This dataset contains channel A and B frequencies along with data collected
from the two dipoles (Dipole A: Monopole 1,2 Dipole B: Monopole 3,4)

• RRI Settings: Information regarding RRI settings are stored within this dataset, for
example the antenna gains, dwell times, sweep modes, etc.

For information about the attributes of each dataset please visit https://
epop.phys.ucalgary.ca/data-handbook/rri-lv1-hdf-file/ or contact
esoc@phys.ucalgary.ca

Tutorials

Creating a Spectrogram

This section describes one way of plotting a spectrogram for RRI data. The data from RRI is
sent to the ground station in 256 byte packets with each packet containing 29 samples from
each monopole. RRI may be operated in a fixed-frequency mode, where the radio is tuned to
a single frequency, or in a sweep mode where the tuning frequency changes with time. For
simplicity, in this tutorial we will be dealing with data from files that have a fixed frequency.
Also, for time values it has been found that the RRI crystal oscillator is extremely stable, so,
we take the time from the first RRI packet and extrapolate that to the end of the pass and
get the time values for all samples.

The input time-domain signal, is transformed into the frequency domain for a spectrogram
using Fast Fourier Transform, and describes what frequencies were present in that signal.
However, one downside of this process is that we lose all information about when the
frequencies occurred. A common way to counteract with this issue is to divide the signal into
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N parts (typically with N having small prime factors), calculate the FFT of all parts and plot
them in the order that they appeared in. This way we can save some information about when
a frequency occurred and not all time-domain data is lost. A higher time resolution results in
knowing when each FFT occurred but provides imprecise frequency information, whereas
high frequency resolution sharpens peaks on each FFT but degrades time resolution. So, in
the end depending on your needs, it is all about finding a "sweet-spot". The RRI quicklook
plots on https://epop-data.phys.ucalgary.ca use 5208 as the default "N" value.

Reading RRI HDF5 files

To read RRI h5 files, we will be using the functionality of python's h5py package. Here we are
using the file from 2017/02/01, but the process for creating a spectrogram should work the
same for any other file.

NOTE: Please make sure to extract the h5 file to your current working directory to run the
following code without any issues.

import h5py #for retrieving data from h5 files 

import numpy as np #for dealing with arrays

#name of h5 file to be read 

h5_File = "RRI_20170201_081043_081555_lv1_13.1.1.h5"

"""Opening the h5 file and 

copying the relevant data into objects"""

with h5py.File(h5_File, "r") as file:

    

print(file.keys())

#channel A frequency value

Freq_A = np.array(file["RRI Data"]["Channel A Frequencies (Hz)"]).flatten()[0]

#Dipole A data

Monopole_1 = np.array(file['RRI Data']['Radio Data Monopole 1 (mV)']).flatten()

Monopole_2 = np.array(file['RRI Data']['Radio Data Monopole 2 (mV)']).flatten()

#time value from first packet

time_0 = np.array(file['CASSIOPE Ephemeris']['Ephemeris MET (seconds since May 24, 1968)'

<KeysViewHDF5 ['CASSIOPE Ephemeris', 'RRI Data', 'RRI Settings']>

In the above code snippet, we first open the h5 file from 2017/02/01 and copy the relevant
information into python objects. Freq_A contains channel A frequency, Monopole_X contains
information about the signal in millivolts (mV) and time_0 contains the seconds elapsed since
May 24, 1968 when the first reading was taken. Monopole_X's are flattened because the data
is in a 2 dimensional array with each row containing 29 samples from each monopole.
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Preprocessing Data

With the relevant data in Python objects, we can move onto the preprocessing step. Here we
will convert the data from millivolts (mV) to microvolts ( ) and create an array containing
the times when the sample was collected. We will also be initialising some constants.

#sampling frequency of RRI

SAMPLING_FREQ = 62500.33933

#number of samples to be used for FFT calculation

NUM_SAMPLES = 5208

#converting millivolts to microvolts

Monopole_1 = Monopole_1*1E3

Monopole_2 = Monopole_2*1E3

"""combining Dipole A into a complex representation with

Monopole 1 as the real part

Monopole 2 as the imaginary part""" 

"""This assumes that the instrument is run in its 

"I1-Q1-I3-Q3" mode, which it is for the vast 

majority of the mission"""

Dipole_A = Monopole_1 + 1j*Monopole_2

#array containing times for each sample

time_array = np.arange(0, Monopole_1.shape[0])/SAMPLING_FREQ + time_0

Calculating FFTs

The following snippet calculates FFT of the signal, average of times and the frequency bins.
For an in-depth explanation, refer to the comments.

#empty list to contain FFT of signal samples

FFT_list = []

#empty list to contain average of time values

time_list = []

#Blackman-Harris Filter to reduce spectral leakage

a0 = 0.3635819

a1 = 0.4891775

a2 = 0.1365995

a3 = 0.0106411

var = np.pi * np.arange(NUM_SAMPLES) / (NUM_SAMPLES - 1)

bh_fil = a0 - a1 * np.cos(2 * var) + a2 * np.cos(4 * var) - a3 * np.cos(6 * var)

#index variable for while loop

i=0

"""loop for calculating FFT from 

i to i+NUM_SAMPLES elements of the signal.

μV
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With each iteration i increases by NUM_SAMPLES"""

while i<(Dipole_A.shape[0]-NUM_SAMPLES):

    

#samples of the signal from i to i+NUM_SAMPLES

#multiplying with bh_fil to prevent spectral leakage

x = Dipole_A[i:i+NUM_SAMPLES]*bh_fil

#calculating FFT for x

#dividing by NUM_SAMPLES for normalization

x_FFT = np.real(np.fft.fftshift(np.fft.fft(x, n=NUM_SAMPLES))) / NUM_SAMPLES

#scaling x_FFT

Pxx = 20*np.log10(np.absolute(x_FFT))

#appending data to corresponding list

FFT_list.append(Pxx)

#calculating average time for the current signal sample

#and adding it to its respective list

avg_time = np.average(time_array[i:i+NUM_SAMPLES])

time_list.append(avg_time)

#iterating i for next run of the loop

i = i + NUM_SAMPLES

#converting FFT_list to an array for better performance

FFT_array = np.array(FFT_list)

#taking transpose to properly align the array

FFT_array = FFT_array.T

#slicing the array to include only the relevant portion 

"""this step would slice out the first NUM_SAMPLES/4 rows 

the last (3*NUM_SAMPLES)/4 rows. The slicing indexes were

decided by RRI calibration methods"""

FFT_array = FFT_array[int(NUM_SAMPLES/4):int(3*NUM_SAMPLES/4)]

#converting time list to an array and 

#slicing it to have the correct shape based on FFT_array

Time_avg = np.array(time_list)

Time_avg = Time_avg[0:int(FFT_array.shape[1])]

#getting frequency bins to be plotted on y-axis

Freq_bins = np.fft.fftfreq(NUM_SAMPLES, d=1.0/SAMPLING_FREQ)

#Scaling frequency bins such that the channel frequency is at the center 

Freq_bins = Freq_bins - SAMPLING_FREQ/4 + Freq_A

#Converting frequency bins from Hz to MHz

Freq_bins = Freq_bins/1E6

#Slicing freqency bins to have the same shape as FFT_array

Freq_bins = Freq_bins[0:int(FFT_array.shape[0])]



Plotting Spectrogram

The following snippet describes how to plot a spectrogram.

import matplotlib.pyplot as plt #for plotting spectrogram

from matplotlib.colors import Normalize #for normalizing colorbar

import datetime as dt #for dealing with datetime values

"""Since this is a scatter plot we will need to 

flatten FFT_array and create two more arrays for

frequency and time values"""

Time_scatter = np.full((FFT_array.shape[0], FFT_array.shape[1]), Time_avg).flatten("F"

Freq_scatter = np.full((FFT_array.shape[1], FFT_array.shape[0]), Freq_bins).flatten()

FFT_scatter = FFT_array.flatten("F")

#objects to be used for Matplotlib graph

#Normalizing max, min values of FFT for colorbar

a_max = np.nanmax(FFT_scatter)

a_min = np.nanmin(FFT_scatter)

if a_min<0:

a_min = -10

signal_norm = Normalize(vmin=a_min, vmax=a_max)

#plotting spectrogram 

fig, ax = plt.subplots(figsize = (10,3))

RRI_channel_plot = ax.scatter(Time_scatter, Freq_scatter, c=FFT_scatter,

norm=signal_norm, cmap="nipy_spectral",

s=0.2)

#setting title 

title_date = dt.datetime.strptime("1968-05-24 00:00:00", '%Y-%m-%d %H:%M:%S') + dt.timedelta

title_date = dt.datetime.strftime(title_date, ' %Y-%B-%d ')

ax.set_title('RRI Channel A Spectrogram\n' + title_date)

#Set plot height

freq_max = np.nanmax(Freq_scatter)

freq_min = np.nanmin(Freq_scatter)

ax.set_ybound(lower=freq_min, upper=freq_max)

#Set plot width

start_time = Time_scatter[0]

end_time = Time_scatter[-1]

ax.set_xbound(lower=start_time, upper=end_time)

#Set plot x-ticks

xticks = np.linspace(start_time, end_time, num=6)

datetime_labels = []

for time in xticks:

utc = dt.datetime.strptime("1968-05-24 00:00:00", '%Y-%m-%d %H:%M:%S') + dt.timedelta
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datetime_labels.append(dt.datetime.strftime(utc, '%H:%M:%S'))

ax.set_xticks(xticks, labels=datetime_labels)

# Add colorbar

cbar = fig.colorbar(RRI_channel_plot, cmap='nipy_spectral', ax = ax)

cbar.set_label(r"Signal (20log$_{10}$($\mu$V/Hz))")

#Add x and y labels

ax.set_xlabel("Time (HH:MM:SS)")

ax.set_ylabel("Frequency (MHz)")

#display plot

plt.tight_layout()

plt.show()

Plotting Spectrogram for Channel B

To plot a spectrogram for channel B, we will need to follow the same steps as we did for
channel A but replace the radio monopoles 1 and 2 with monopoles 3 and 4. Following is the
complete code:

import h5py #for retrieving data from h5 files 

import numpy as np #for dealing with arrays

import matplotlib.pyplot as plt #for plotting spectrogram

from matplotlib.colors import Normalize #for normalizing colorbar

import datetime as dt #for dealing with datetime values

#name of h5 file to be read 

h5_File = "RRI_20170201_081043_081555_lv1_13.1.1.h5"

#sampling frequency of RRI

SAMPLING_FREQ = 62500.33933

#number of samples to be used for FFT calculation

NUM_SAMPLES = 5208

"""Opening the h5 file and 

copying the relevant data into objects"""

with h5py.File(h5_File, "r") as file:
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#channel B frequency value

Freq_B = np.array(file["RRI Data"]["Channel B Frequencies (Hz)"]).flatten()[0]

#Dipole B data

Monopole_3 = np.array(file['RRI Data']['Radio Data Monopole 3 (mV)']).flatten()

Monopole_4 = np.array(file['RRI Data']['Radio Data Monopole 4 (mV)']).flatten()

#time value from first packet

time_0 = np.array(file['CASSIOPE Ephemeris']['Ephemeris MET (seconds since May 24, 1968)'

#PREPROCESSING

#converting millivolts to microvolts

Monopole_3 = Monopole_3*1E3

Monopole_4 = Monopole_4*1E3

"""combining Dipole B into a complex representation with

Monopole 3 as the real part

Monopole 4 as the imaginary part""" 

"""This assumes that the instrument is run in its 

"I1-Q1-I3-Q3" mode, which it is for the vast 

majority of the mission"""

Dipole_B = Monopole_3 + 1j*Monopole_4

#array containing times for each sample

time_array = np.arange(0, Monopole_3.shape[0])/SAMPLING_FREQ + time_0

#CALCULATING FFTs

#empty list to contain FFT of signal samples

FFT_list = []

#empty list to contain average of time values

time_list = []

#Blackman-Harris Filter to reduce spectral leakage

a0 = 0.3635819

a1 = 0.4891775

a2 = 0.1365995

a3 = 0.0106411

var = np.pi * np.arange(NUM_SAMPLES) / (NUM_SAMPLES - 1)

bh_fil = a0 - a1 * np.cos(2 * var) + a2 * np.cos(4 * var) - a3 * np.cos(6 * var)

#index variable for while loop

i=0

"""loop for calculating FFT from 

i to i+NUM_SAMPLES elements of the signal.

With each iteration i increases by NUM_SAMPLES"""

while i<(Dipole_B.shape[0]-NUM_SAMPLES):

    

#samples of the signal from i to i+NUM_SAMPLES

#multiplying with bh_fil to prevent spectral leakage



x = Dipole_B[i:i+NUM_SAMPLES]*bh_fil

#calculating FFT for x

#dividing by NUM_SAMPLES for normalization

x_FFT = np.real(np.fft.fftshift(np.fft.fft(x, n=NUM_SAMPLES))) / NUM_SAMPLES

#scaling x_FFT

Pxx = 20*np.log10(np.absolute(x_FFT))

#appending data to corresponding list

FFT_list.append(Pxx)

#calculating average time for the current signal sample

#and adding it to its respective list

avg_time = np.average(time_array[i:i+NUM_SAMPLES])

time_list.append(avg_time)

#iterating i for next run of the loop

i = i + NUM_SAMPLES

#converting FFT_list to an array for better performance

FFT_array = np.array(FFT_list)

#taking transpose to properly align the array

FFT_array = FFT_array.T

#slicing the array to include only the relevant portion 

"""this step would slice out the first NUM_SAMPLES/4 rows 

the last (3*NUM_SAMPLES)/4 rows. The slicing indexes were

decided by RRI calibration methods"""

FFT_array = FFT_array[int(NUM_SAMPLES/4):int(3*NUM_SAMPLES/4)]

#converting time list to an array and 

#slicing it to have the correct shape based on FFT_array

Time_avg = np.array(time_list)

Time_avg = Time_avg[0:int(FFT_array.shape[1])]

#getting frequency bins to be plotted on y-axis

Freq_bins = np.fft.fftfreq(NUM_SAMPLES, d=1.0/SAMPLING_FREQ)

#Scaling frequency bins such that the channel frequency is at the center 

Freq_bins = Freq_bins - SAMPLING_FREQ/4 + Freq_B

#Converting frequency bins from Hz to MHz

Freq_bins = Freq_bins/1E6

#Slicing freqency bins to have the same shape as FFT_array

Freq_bins = Freq_bins[0:int(FFT_array.shape[0])]

#PLOTTING SPECTROGRAM

"""Since this is a scatter plot we will need to 



flatten FFT_array and create two more arrays for

frequency and time values"""

Time_scatter = np.full((FFT_array.shape[0], FFT_array.shape[1]), Time_avg).flatten("F"

Freq_scatter = np.full((FFT_array.shape[1], FFT_array.shape[0]), Freq_bins).flatten()

FFT_scatter = FFT_array.flatten("F")

#objects to be used for Matplotlib graph

#Normalizing max, min values of FFT for colorbar

a_max = np.nanmax(FFT_scatter)

a_min = np.nanmin(FFT_scatter)

if a_min<0:

a_min = -10

signal_norm = Normalize(vmin=a_min, vmax=a_max)

#plotting spectrogram 

fig, ax = plt.subplots(figsize = (10,3))

RRI_channel_plot = ax.scatter(Time_scatter, Freq_scatter, c=FFT_scatter,

norm=signal_norm, cmap="nipy_spectral",

s=0.2)

#setting title 

title_date = dt.datetime.strptime("1968-05-24 00:00:00", '%Y-%m-%d %H:%M:%S') + dt.timedelta

title_date = dt.datetime.strftime(title_date, ' %Y-%B-%d ')

ax.set_title('RRI Channel B Spectrogram\n' + title_date)

#Set plot height

freq_max = np.nanmax(Freq_scatter)

freq_min = np.nanmin(Freq_scatter)

ax.set_ybound(lower=freq_min, upper=freq_max)

#Set plot width

start_time = Time_scatter[0]

end_time = Time_scatter[-1]

ax.set_xbound(lower=start_time, upper=end_time)

#Set plot x-ticks

xticks = np.linspace(start_time, end_time, num=6)

datetime_labels = []

for time in xticks:

utc = dt.datetime.strptime("1968-05-24 00:00:00", '%Y-%m-%d %H:%M:%S') + dt.timedelta

datetime_labels.append(dt.datetime.strftime(utc, '%H:%M:%S'))

ax.set_xticks(xticks, labels=datetime_labels)

# Add colorbar

cbar = fig.colorbar(RRI_channel_plot, cmap='nipy_spectral', ax = ax)

cbar.set_label(r"Signal (20log$_{10}$($\mu$V/Hz))")

#Add x and y labels

ax.set_xlabel("Time (HH:MM:SS)")

ax.set_ylabel("Frequency (MHz)")

#display plot



plt.tight_layout()

plt.show()
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