
GAP TUTORIAL
This notebook provides some basic overview and information on how to read GAP line-of-sight (LOS) total
electron content (TEC) netCDF and RINEX files along with plotting the LOS TEC data for each GPS satellite as
a function of time.

Table of Contents
About GAP
Prerequisites
How the files are stored

GAP Line of Sight(LOS) TEC NetCDF File
GAP Lv2 (RINEX) File

Tutorials
1. Reading GAP Line of Sight (LOS) TEC netCDF File
2. Plotting LOS TEC data for each GPS satellite as a function of time
3. Reading Lv2 RINEX file

About GAP
The e-POP Global Position System (GPS) receiver-based Attitude, Position, and profiling experiment (GAP) is
used for spacecraft position and attitude determination and for ionospheric radio occultation profiling
measurements.

GAP employs five differential Global Positioning System receivers and associated antenna complement to
provide the e-POP payload with high-resolution spatial positioning information, flight-path velocity
determination, and real-time, high-stability timing. In addition, by measuring the arrival times of the various
GPS signal wave fronts at each antenna against a very stable time base, the relative range between antennas
can be determined, yielding real-time spacecraft attitude determination. One of the GAP antennas
(connected to receiver #4) is mounted on the anti-ram side of the spacecraft and dedicated to ionospheric
radio occultation measurements. The other four antennas are mounted on the anti-nadir face of the
spacecraft.

Prerequisites
1. This tutorial assumes you have some basic understanding of Python and its terminology.

2. You will be required to install the following libraries in your python environment:

matplotlib
numpy
pandas
scipy

https://matplotlib.org/stable/users/installing/index.html
https://numpy.org/install/
https://pandas.pydata.org/docs/getting_started/install.html
https://scipy.org/install/

How the files are stored

GAP Line of Sight (LOS) TEC NetCDF file

The GAP Line of Sight TEC netCDF file provides the line of sight total electron content between a given e-
POP GPS receiver and any locked GPS satellite. The LOS TEC data has been phase-leveled and bias
compensated according to Watson, C., et al., (2018) Enhanced Polar Outflow Probe ionospheric radio
occultation measurements at high latitudes: Receiver bias estimation and comparison with ground-
based observations, Radio Science, 53, 10.1002/2017RS006453.

Filename Format: "GAP_yyyymmdd_HHMMSS__hhmmss_LOS_TEC_RCVR_r_V.v.r.nc"

 where,

r: GAP Receiver number (0-3=GAP-A; 4=GAP-O)
mm: File month
dd: File day
yyyy: File year
HH: File start hour (UT)
MM: File start minute (UT)
SS: File start second (UT)
hh: File end hour (UT)
mm: File end minute (UT)
ss: File end second (UT)
V: Major code version
v: Minor code version
r: Reprocessing count

GAP Lv2 (RINEX) File

GAP level 2 RINEX data files are generated for each GAP turn-on session and for each receiver that was
operating.

GAP level 2 files are text files, formatted to the Receiver Independent Exchange Format (RINEX) standard,
version 3.02. They are produced by the NovAtel-supplied “Convert” software, version 2.6.7. There are two
types of RINEX files, O (observation) and N (navigation), and each share the same name as the lv1 file it was
created from, save for the file extension. Reference R3 describes the RINEX format in detail.

Tutorials

Reading GAP Line of Sight (LOS) TEC NetCDF File

The LOS TEC files are provided in a netCDF format which can be read using scipy's netcdf_file function. The
files store the data in a NETCDF3 format and each entry of the dataset can be converted to dictionary as
below.

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017RS006453
https://epop.phys.ucalgary.ca/wp-content/uploads/2021/05/R3-The-Receiver-Independent-Exchange-Format-RINEX-v3.02.pdf

Reciever number: 0

Dictionary keys as follows:
dict_keys(['PRNs', 'GPS_DCBs', 'RCVR_DCB', 'RCVR_DCB_RMS', 'UT', 'LOS_TEC', 'L1', 'L2',
'L1_CN0', 'L2_CN0', 'Data_flags', 'XGPS', 'YGPS', 'ZGPS', 'XePOP', 'YePOP', 'ZePOP'])

The above code opens a .nc file and converts all the data from the file to a dictionary object. To get the
receiver number from which the data is being used we use python's re module and store its value in a
python integer object.

Plotting LOS TEC data for each GPS satellite as a function of time

To plot LOS TEC data as a function of time we will be first converting the data from nc_dict to pandas
dataframe and then grouping by PRNs to create an individual plot for each GPS satellite.

The following example considers that you have all the .nc files from one day stored in one folder and are
planning to create a LOS TEC plot for the entire day.

1. Importing all the necessary libraries and getting the path to .nc directory.

1. In this step, we will be creating a list of rows from .nc dictionary which would have the elements as
[PRN, UTC, RCVR_num, LOS_TEC]. The LOS_TEC values within the .nc files are stored as a table with the

In [1]: from scipy.io import netcdf_file #for opening .nc files
import re #to find reciever number

#name/path of .nc file
filename = "GAP_20190801_221649_240000_LOS_TEC_RCVR_0_2.1.0.nc"
#opening nc file
nc_file = netcdf_file(filename, "r", mmap=False)

vars = nc_file.variables.keys() #storing data keys and values in vars
#converting data keys and values to a dictionary
nc_dict = dict((v, nc_file.variables[v].data) for v in vars)
nc_file.close() #closing the file

RCVR_num = int(re.findall(r"\d+", filename)[3]) #receiver number from filename

print("Reciever number: {}".format(RCVR_num))
print("\nDictionary keys as follows:")
print(nc_dict.keys())

In [2]: from scipy.io import netcdf_file #to work with .nc files
import os #to finc .nc files in a directory
import re #to find reciever number
import datetime #to get starting datetime from filename
import pandas as pd #to work with dataframes
import io #to work with strings
import matplotlib.pyplot as plt #for plotting
import matplotlib.dates as mdates #formatting dates on plot
import numpy as np #sorting unique PRN values

#path where .nc files are stored
#in this case the files are stored in the same folder as this notebook
path_to_nc = os.getcwd()

#an empty list where the row information will be stored
rows = []

rows being UT hours and columns being PRN number, for easier plotting we will be unfolding this table
using nested for loops.

 The basic code for this step will be looking for .nc files within the directory, if a file ends with .nc extension
then we gather the starting datetime and recevier number from the filename and proceed to gather the UT
and PRN information.

Working with GAP_20190801_221649_240000_LOS_TEC_RCVR_0_2.1.0.nc
Working with GAP_20190801_221650_235959_LOS_TEC_RCVR_2_2.1.0.nc
Working with GAP_20190801_221651_240000_LOS_TEC_RCVR_3_2.1.0.nc

1. With the row information in a list, can move onto creating a pandas DataFrame using this.

In [3]: #loop to go over each file within a directory
for file in os.listdir(path_to_nc):

 if file.endswith(".nc"):
 print("Working with {}".format(file))

 #getting the starting datetime from filename
 start_time = datetime.datetime.strptime(re.search(
 r"\d{4}\d{2}\d{2}_\d{2}\d{2}\d{2}"
 , file).group(),
 "%Y%m%d_%H%M%S")
 #making sure that the time starts at 00:00:00
 #as the UT time is in hours from 00:00:00
 start_time = start_time.replace(hour=0, minute=0, second=0)

 #getting reciever number from filename
 #the 3rd value from the following list would correspond to reciever number
 RCVR_Num = int(re.findall(r"\d+", file)[3])

 #opening .nc file
 f = netcdf_file(file, "r", mmap=False)
 #getting all the data (keys and values) into vars
 vars = f.variables.keys()
 #converting all the info from vars to dictionary
 d=dict((v, f.variables[v].data) for v in vars)
 f.close()

 #following block of code will convert LOS_TEC to 1 dimension

 #loop to iterate over all PRN numbers present within the data
 for i in range(len(d["PRNs"])):

 #loop to iterate over all UT hours present within the data
 for j in range(len(d["UT"])):
 #adding UT hours to starting datetime
 time = start_time + datetime.timedelta(hours=d["UT"][j])
 #converting datetime to string
 time = time.strftime("%Y-%m-%d_%H:%M:%S.%f")

 #row information
 row = str(str(d["PRNs"][i])+" "+str(time)+" "+str(RCVR_Num)+" "
 +str(d["LOS_TEC"][i][j]))
 #appending row information to its list
 rows.append(row)

In [4]: #column names for the dataframe
column_names = """PRN UTC RCVR LOS_TEC"""

 PRN UTC RCVR LOS_TEC
0 20 2019-08-01 22:16:48.998108 0 15.395672
1 20 2019-08-01 22:16:49.998108 0 15.386823
2 20 2019-08-01 22:16:50.998108 0 15.381049
3 20 2019-08-01 22:16:51.998108 0 15.361867
4 20 2019-08-01 22:16:52.998108 0 15.358225

PRN int64
UTC datetime64[ns]
RCVR int64
LOS_TEC float64
dtype: object

1. Finally, we can get the unique values for PRNs from the dataframe and plot LOS_TEC as a function of
time. For demonstration purposes we will be plotting the first 6 satellites.

#inserting column names string as the first element
rows.insert(0, column_names)

#converting the list separated with whitespace as delimiter to dataframe
TEC_df = pd.read_csv(io.StringIO("\n".join(rows)), delim_whitespace=True)

#converting UTC column to datetime column
TEC_df["UTC"] = pd.to_datetime(TEC_df["UTC"],
 format="%Y-%m-%d_%H:%M:%S.%f")

print(TEC_df.head())
print("\n{}".format(TEC_df.dtypes))

In [5]: #numpy array of unique PRN values
PRN_unique = TEC_df["PRN"].unique()
#sorting values in an ascending order
PRN_unique = np.sort(PRN_unique, axis=0)

#variable to break for loop when after plotting 6 satellites
flag = 0

#this loop will plot the LOS_TEC values on the same plot
for i in range(len(PRN_unique)):
 #temporary dataframe for unique value of PRN
 tempdf = TEC_df[TEC_df["PRN"]==PRN_unique[i]]

 #plotting LOS_TEC as function of time
 plt.plot(tempdf["UTC"], tempdf["LOS_TEC"], label="GPS num.: "+str(PRN_unique[i]))

 flag+=1 #iterating flag variable
 #the following condition will be true after 6 trendlines are plotted
 if flag==6:
 break

#formatting the plot
plt.legend()
plt.suptitle("LOS-TEC as a function of Time")
plt.xlabel("Time (UTC)")
plt.ylabel("LOS-TEC (TEC units)")
plt.gcf().autofmt_xdate()
fmt = mdates.DateFormatter("%H:%M:%S")
plt.gca().xaxis.set_major_formatter(fmt)
plt.show()

Reading Lv2 (RINEX) File

The Receiver Independent Exchange Format (RINEX) files contain the raw GPS pseudorange, doppler shift,
carrier phase, and signal strength data, and can be interpreted as text files in python. Lines in RINEX files
that start with '>' contain information about measurement datetime and the number of satellites which were
observed during the epoch. The subsequent lines contain information about the GPS satellite signals,
including both the L1 and L2 bands.

To read RINEX files, we will first go through a directory which contains these files, read information from
each line, append the information to a list and finally convert it to a pandas dataframe. The entire process is
described below in steps.

1. Import necessary modules

1. Enter the search pattern for RINEX files and the directory to look into.

 NOTE: By default, the ending extension of RINEX observation files is .yearO.

In [11]: import io #for string operations
import os #to look for RINEX files
import re #to find reciever information
import pandas as pd #for dataframes

In [12]: search_extension = ".19O" #file extension to look for

#directory where RINEX files are stored
path_to_RINEX = r"D:\comm_soft_tools\python_codes\tutorials\GAP_tutorial"

1. Going over each file within the directory and appending the epoch information to a list.

Working with GAP_20190801_221631_235959_RCVR_0_3.1.1.19O
Working with GAP_20190801_221632_235959_RCVR_2_3.1.1.19O
Working with GAP_20190801_221633_235959_RCVR_3_3.1.1.19O

The above code consists of 3 nested for loops, the first one goes over all the files within a directory to see
which ones match the file extension, the second one opens a file when the pattern is matched and goes
over each line to check which ones start with >. The last loop looks for satellite information after a '>' match
is found.

NOTE: The above code will append information from all RINEX files to rows list.

In [13]: rows = [] #empty list to store row information

#loop to go over each file in the directory
for file in os.listdir(path_to_RINEX):

 #the following condition will be true if any files have search_extension
 if file.endswith(search_extension):

 print("Working with {}".format(file))

 #3rd element of nums in filename is the reciever number
 RCVR_num = int(re.findall(r"\d+", file)[3])

 #opening file
 RINEX_file = open(file)
 #reading lines from the file
 lines = RINEX_file.readlines()
 #closing file
 RINEX_file.close()

 #loop to go over each line and append appropriate info to rows
 for i in range(len(lines)):

 #condition true if line starts with ">"
 if lines[i].startswith(">"):
 #datetime info
 date = str(lines[i].strip(" >\n"))

 #loop to add satellite information after datetime is saved
 for j in range(i+1, len(lines)):

 #if the next line does not start with ">",
 #then it contains satellite info
 if not lines[j].startswith(">"):
 sat_info = str(lines[j].strip())#satellite information

 #following we convert all the information to a string
 #separated with whitespaces
 row = str(str(RCVR_num) + " " + date + " " + sat_info)

 #appending row information to its list
 rows.append(row)

 #condition true if next line starts with ">"
 else:
 #breaking this block of for loop
 break

1. Converting rows list to pandas DataFrame.

 Time RCVR_Num Epoch_Flag Num_GPS_Sat_Obs RCVR_clck_off \
0 2019-08-01 22:16:49 0 0 9 -0.0
1 2019-08-01 22:16:49 0 0 9 -0.0
2 2019-08-01 22:16:49 0 0 9 -0.0
3 2019-08-01 22:16:49 0 0 9 -0.0
4 2019-08-01 22:16:49 0 0 9 -0.0

 Sat_num Pseudorange band Carr_Phase band(Carr_Phase) Doppler_Shift \
0 G20 2.104012e+07 8 1.105666e+08 8.0 -8398.664
1 G26 2.015212e+07 8 1.086882e+08 8.0 -9973.441
2 G16 2.140915e+07 8 1.152940e+08 8.0 -26048.156
3 G29 2.564754e+07 8 1.375668e+08 8.0 -4578.371
4 G21 2.383944e+07 7 1.252771e+08 7.0 -34468.324

 Signal_Strength Pseudorange_2 band_2 Carr_Phase_2 band(Carr_Phase)_2 \
0 48.754 2.104011e+07 7.0 8.615574e+07 7.0
1 48.862 2.015212e+07 7.0 8.469164e+07 7.0
2 48.396 2.140915e+07 6.0 8.983897e+07 6.0
3 49.349 2.564754e+07 6.0 1.071944e+08 6.0
4 47.532 2.383944e+07 7.0 9.761851e+07 7.0

 Doppler_Shift_2 Signal_Strength_2
0 -6544.418 43.001
1 -7771.512 43.868
2 -20297.270 39.659
3 -3567.504 39.989
4 -26858.441 42.338

In [14]: #column names for the dataframe
column_names = """RCVR_Num Year Month Day Hour Minute Second Epoch_Flag \
 Num_GPS_Sat_Obs RCVR_clck_off Sat_num Pseudorange band \
 Carr_Phase band(Carr_Phase) Doppler_Shift Signal_Strength \
 Pseudorange_2 band_2 Carr_Phase_2 band(Carr_Phase)_2 \
 Doppler_Shift_2 Signal_Strength_2"""

#inserting column names at the first postion
rows.insert(0, column_names)

#converting rows list to dataframe using io.StringIO with whitespace as delim
RINEX_df = pd.read_csv(io.StringIO("\n".join(rows)), delim_whitespace=True)

#merging datetime information into one column
RINEX_df["Time"] = RINEX_df["Year"].astype(str)+"-"+RINEX_df["Month"].astype(str)+"-"\
 +RINEX_df["Day"].astype(str)+"_"+RINEX_df["Hour"].astype(str)+":"\
 +RINEX_df["Minute"].astype(str)+":"+RINEX_df["Second"].astype(str)

#deleting no longer useful columns
RINEX_df = RINEX_df.drop(columns=["Year", "Month", "Day", "Hour", "Minute", "Second"])

#moving datetime column to the first position
RINEX_df = RINEX_df[["Time"]+[col for col in RINEX_df.columns if col != 'Time']]

#converting datetime column to datetime object
RINEX_df["Time"] = pd.to_datetime(RINEX_df["Time"],
 format="%Y-%m-%d_%H:%M:%S.%f")

print(RINEX_df.head())

